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Abstract

A method of including electron correlations in the relaxation theory for spectral
line broadening plasmas is presented. The effect of these correlations in the
relaxation theory is compared with the analogous results in the impact theory;
specifically, it is shown that the impact parameter cutoff used in the imoact
theory constitutes a very good approximation to the effect of these correla~
tions. ’
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1. INTRODUCTION

The spectral distribution of the radiation emitted by atoms in a plasma
is determined primarily by perturbations which the charged particles exert on
the atom. For neutral atoms, the dominant perturbation is a Stark effect with
the electric microfield produced by the charged particles in the plasma. Since
this is a "long range" type of interaction, one is forced to consider the simul-
taneous effect of many perturbing particles, that is, a many-body perturbation
potential. |

Over the times of interest in most line broadening problems, the distribu-
tion of ions does not vary appreciably. This fact has given rise to a static-
ion approximation, in which it is assumed that the ions do not move at all.
With this approximation, it is possible to treat the ions by means of an average
over all possible static ion fields.1 The many-body aspects of the ion-atom
interaction are taken into account in the derivation of the ion field distri-

bution function. In the static-ion approximation, the atom is perturbed

by an electric field which has a static component due to the ions, and a rapidly
fluctuating component due to the electroms.

In many line broadening theories, an attempt is made to reduce the electron-
atom interaction to a binary collision bétween the atom and a single perturber.
In these "one—electronﬁ theories4, it is necessary to use an effective inter-
action which accounts for the many-body effects.

Since the usual effect of particle correlations is to introduce a shielding
of the potential, one is at first tempted to use a Debye shielded field for
the electron. Such arguments were indeed used in the early versions of the

b

impact theory to justify cutting off the range of the electron-atom inter—

action at the Debye length. However, the validity of such a procedure is open
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to question because a shielded field is a time-average effect whereas an impor-
tant characteristic of the electron fiéld, in this aspect of line broadening,
is its rapid fluctuation in time. Lewis7 has approached this problem without
the use of a shielded field assumption and without the '"completed collision
assumption' which had been made by the impact theories. His work indicates
that the usual cutoff procedure is valid, in the line wings [see Eq.(19) of
ref.(7)], if the frequency separation, Aw, from the center of the natural line
is less than vaV/AD, where vav is the average electron velocity and XA is the

D
Debye length. For larger frequency separations, the cutoff at the Debye length

is replaced by a cutoff at vaV/Aw.

In a recently developed relaxation theory for spectral line broadening
in plasmasl, an expression for the line profile was obtained, in the static-
ion approximation, without the use of binary collision or impact approxima-
tions. In the relaxation theory, the electrons are treated as a many-particle
dilute gas weakly coupled to the atom. The results of the relaxation theory
are formally quite similar to those of the impact theories; the primary dif- .
ference being in the form of the "effective interaction operator" which repre-
sents the influence of the electron perturbation on the atom. In the relaxation
theory this operator,g((w), is a frequency-dependent complex operator whereas,
in the impact theories (for hydrogen) this operator is not compléx.

In ref.(l), calculations were made with the assumption that thé distribution
of electron states may be approximated by an ideal gas. It is the purpose of
this paper to correct that ideal gas approximation and to compare the results
of this correction with the corresponding work in the'impact theory.

Tt will be shown that the electron correlations influence only the effective

interaction operator,)<(w), and their effect on the real part of this operator
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is almost identical with the results obtained by Lewis . It is also found that
the strong electron-atom interactions, which have been given no special treatment

in the relaxation theory, can influence H(w) in a significant manner.

2. INITIAL FORMULATION AND APPROXIMATIONS

In the relaxation theory, the system considered is an excited atom weakly
coupled to a macroscopically neutral gas of electrons and ions. The weak coupling
is provided by a dipole-field interaction of the form e3‘§§e+§i) in which & denotes
the position of the atomic electron while ée and‘éi represent the electric fields
produced by the electrons and ions respectively.

The Hamilfonian for the plasma is the sum of the unperturbed atomic Hamil-
tonian, Ha, the electron and ion kinetic energy operators, Ke and Ki’ the elec-
tron and ion internal potential energy operators, Vee and Vii’ the electron-ion

interaction, V_,, and the weak coupling interaction eRe« (€ +§,):
ei w we wi
H = Ha+Ke+Vee+Ki+Vii+Vei+e5'(.ﬁe*ﬁi) . (1)

It is assumed that the potential function (Vee+Vei+Vii) can be replaced by an
effective potential (Ve+vi) where Ve and Vi contain only electron and ion coor-
dinates respectively. A Debye-Huckel effective potential is used for the ions;
the electron potential will remain temporarily unspecifieds. Using Ve and Vi’

it is convenient to define electron and ion Hamiltonians, He and Hi’ by

H
e

K +V
e e

(2)
H, = K4V, .
i
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As in most line hroadening theories, the ions are regarded as infinitely
massive classical particles over the time of interest (static ion approximation).
It is further assumed that the three subsystems are statistically independent
and the plasma density matrix is given by a product of density matrices for the
atom, electrons, and ionsg, p(a)p(e)p(i). This approximation required that the
coupling interaction, e&~(§e+é&), be neglected in the density matrixl. By neg-
lecting this coupling, the electron-atom and ion-atom correlations are removed.
These correlations will be important for strong fields which will be discussed

further in section (4).

With the above approximations, it is found that the line shape for dipole

radiation is given by1

I() = fQ(QJ(w,g)d% (3)

where Q(E) is the probability of finding an ion field, €, at the atom and J(w,£)
is the line shape resulting from the electron atom interaction in the presence

of the static field £. In the relaxation theory, w is a complex variable, w=$+ie,
whose real part, 3, is the true frequencv and whose imaginary part, e, repre-
sents thé natural width for the line being studied. The Hamiltonian which appears

in J(w,£) is
LI -
H' = H_+H_teR ( §e+£) (4)

. . . 1
where ﬁiis a vector which has the same magnitude and direction as the ion field™.

The microfield function,vQ(gp, is known2 and J(m,s), evaluated by meauns

. . X . 1
of the Zwanzig-Fano relaxation techniques, is given by :

ICw,g) = =1 Im Tr_ (g -8 17 6 D)) 5)
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where d is the atomic dipole operator™ , £ () is an effective Liouville operator
for the 'atom, and the trace is over states of the atom. In ref.(l), L (w) is
expanded in a perturbation series based on an unperturbed Liouville operator,
Lo, which corresponds to the Hamiltonian (Ha+He), and a perturbation, Ll’ which
corresponds to the interaction eRe (6e+~§)‘

The H  eigenstates |a>, |b>, |c> are used in evaluating the trace in Eq.(5)

and the energy difference between the states |a> and |b> is denoted by w

ab’
Denoting the z component of 5\ by R? and defining a variable Awab=m—wab, the
matrix elements of [w-{(w)] are given byl
[w—"c(w‘)]ab,a'b' - Au“ab(saa'(sbb' (eE/ﬁ)(Raa'be' Rb'bsaa') lH(w)ab,a'b' (6)

where { (w) is an effective interaction operator which takes the place of the
operator q)ab used by Griem et.al. [see Eqs(10) and (32) of ref.(6)] or the operator
A used by Baranger [see Eq.(13-46) of ref.(11)]. Since the primary difference
between the impact and relaxation theories lies in X (w), this operator will be

studied in detail in the following sections.

3. THE EFFECTIVE INTERACTION OPERATOR

A. A Second Order Expression for H(w)

In ref.(1l), the perturbation operator Ll was written in the form (L§+Li)

e i .
where L1 corresponds to eﬁ-’%e and L1 corresponds to eR-£. With these operators,

the result of a second order evaluation of H(w) was found to be1

12 §(w) = <LiK° (m)Li> (7
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where <+++> denotes an ensemble average over electron states and K°(w) is given

by
o -1
K® (w) = (w-—LO/ﬁ)

- f elutemiloMy, (8)
(0]

In order to write out an explicit expression for H(w), the H eigenstates
|a>, |b>, |e> and the H, eigenstates |a>, |8>, |y> will be used. In terms of

the composite state vectors |aa>, |bg>, |cy>, the operator K°(w) is diagonal:

o _ 1.0
K (w)aaBb; a!alst| =k v(w)aabBGaa|5bb'68815aat
o ® (9)
k <“’)aabs = —1LexP{1t(m-wab—wa3)}dt.
The electron density matrix,
of = exp (=H,/kT) /Tro{exp (-Hy/kT) }, (10)

is also diagonal and its matrix elements are written in the form

(e) _
Pagbg faGaBGab' (11)
With the above notation, J{(w) may be writtenl
2" = l L] [ ] ' o |
h "«w)aabs;a'a'b'ﬁ' ‘Sbb'a%:a“leg éelCB><CB|e§ §e!a 0l->fak (“)csba
. o
+ 8,0 ) <b'u|eR+Ee|cB><cB|eR £, |Da>f k W ocn
oBc
(12)

) <b's[e§-§_e[ba><aa|e§-§_e|a'3>f6k°(w)

b'
o8 aab’' B

- Z<aa’e§-£e la',B><b' B|e§'§e |ba>f8k9(w)

' L]
o8 a'Bgba
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These terms are evaluated in Appendix A using the classical limit of the Boltz-
mann factor and a linearized Debye-Huckel radial distribution function to describe
the distribution of states in the electron gas; it is also assumed that the

change in the internal electron potential, V,, is negligible over the times

of interest [see Eq.(A.15)]. The results of this evaluation provide the

following expression:

KW g 2t = —(2ie‘+n/3ﬁ2)(8nm/kT)l/2{§[§b'§ac'R

mca'G(chb)

(13)
+ 6aav\R‘blc'§ch("Awac) ]_\%aa' .‘Bb'b[G(Awab' )""G("Awavb)]

where m and n denote the mass and density of electrons, and G(Aw) is an integral

discussed in the following sections.

B. Some Physical Properties of H(w)

To second order, H(w) represents a quadratic Stark interaction between
the atom and the fluctuating electron field. In order to study the meaning
of the frequency dependence in H(w), we note that it is possible to interpret
a quadratic Stark effect as an induced dipole interactionlz. The frequency
dependence in J{(w) is therefore a result of the time dependence in an induced
dipole interaction; that is, as the microfield §e varies, the induced atomic
dipole vector moves in such a way that it always points in the same direction
as the field ﬁé’ An interaction of this type will lower the atomic energy levels.
Since the lower energy states are more tightly bound, the energies of the final
states will be less affected, the net result being a reduction in the emnergy

separation of the initial and final states. We therefore expect the quadratic

electron-atom interactions to produce a small asymmetry in the line profile
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which increases the intensity of the red wing relative to that of the blue
wing; we also expect these interactions to shift the center of the line toward
13
longer wavelengths™ ~.
To explore the source of these shifts and asymmetries, we note that a

simple Lorentzian line may be expressed by
B . -1
—_ry - + = _ 2 2
Im[w W, (wr iwi)] wi/[(Aw wr) +mi ] (14)

where W denotes a shift of the line center and wy provides the line width.
The line shape J(m,é), given by Egs.(5) and (6), may be loosely compared

with Eq.(14), and one may expect the real part of J to produce a shift while
the imaginary part adds to the line width. The frequency dependence of H(w)
indicates that these "width" and “shift" operators may not be symmetric. The
linear Stark effect in Eq.(6) produces a symmetric splitting and therefore
contributes only to the width. These arguments are offered merely as plausi-
bility arguments because, strictly speaking, one may not discuss the operators
in J(w,€) in the same manner as the scalars in Eq.(14). Nevertheless, this
does give a rough idea of the roles playved by the real and imaginary parts ofa
¥ in determiniﬁg the line shape. It may be noted in passing that, in the
numerical calculations made by the author, it is found that the line shift
vanishes when the real part of X is set to zero. Furthermore, when the shift
vanishes, most of the asymmetry in the line center also vanishes; this indicates
that the center region of the broadened line isAroughly symmetric about the

shifted frequency.

C. The Integral G(Aw)
From Eq.(13), it is clear that the integral G(Aw) contains all of the

frequency dependence in the effective interaction, M{(w). In Appendix A, it
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is shown that the influence of electron correlations is also contained in G(4w).
Since this integral plays such an important role in the study of the electron-
atom interaction, its derivation is presented in detail in that appendix. The
results of this derivation are outlined and interpreted in this section.

The G integral which appears in the ideal gas case (no correlations) is

given by Eq.(A38) [and also by Eq.(58) of ref.(1)] in the form

D

GO(Aw) = J exp{isﬁAw/kT}(sz+is)_1/2ds. - (15)
o

When electron correlations are considered, it is found that a correction term

is added to the integrand in Eq.(15). The corrected integral is given by Eq.(A38)

in the form
G(Aw) = J exp{isﬁAw/kT}[(sz+is)_l/2—/;a exp{a2(32+ié)}Erfc{avsz+is}}ds, (16)
0

where Erfc is the complimentary error function. The parameter a is definedby

by A/Z/%AD, where A and Ap

length, vkT/4mne?, for electrons.

are the thermal wavelength, h/v2mmkT, and the Debye

From Eq.(1l6) it is apparent that the parameter o is a measure of the importance

of electron correlations. In the limit o>0, the argument of the integrand in Eq.(15)

becomes 1//sZ+is hence G(Aw) reduces to the ideal gas result, G,(Aw), in this
limit. For any finite a however, the ideal gas term,l//gzngswill dominate
the Erfc term for sufficiently small values of s; that is, the electron correla-
tions are negligible for short times or large Aw. We note further that 1/Vs%His
is the large s asymptote of the Erfc term. This implies that the electron
correlations will be important for long times or small Aw.

Further analysis of the integrand in Eq.(16) shows that the transition

from the regime where correlations are important, to the ideal gas regime,
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occurs for the values of s on the order of 1/a. Since azﬁwp/kT, where wp is

the plasma frequency, we may use the well known property of Fourier transforms,

AwAtx1 (17)

to infer that correlations will be important only for lAw|<wp. This also in-
dicates that the transition from the correlated regime to the ideal gas regime
occurs for values of |Aw| on the order of w, or Vay./Ap where v is the average

electron velocity. This is exactly the point where the Lewis cutoff is applied
in the impact theory7.
We therefore conclude that, for frequency separations (from the center
of the natural line) less than vav./xD many-particle effects are important
and electron correlations must be considered. In the impact theory this is
done by shielding the electron-atom interaction, or by cutting off the range
of this interaction at the Debye length. When |Aw| is larger than vav./kD
the correlations are negligible, hence the atom is perturbed through binary
collisions with electrons and electron-atom interaction need not be shielded.”
In order to illustrate the above conclusions ‘graphically, it is convenient
to express G(Aw) in terms of real functions. It is possible to write G(Aw)

in the form
G(aw) = Gr(Ab—iGi(Ab ' (18)

Y N
where Gr and Gi are real functions of the real variable Aw. The variable Auw,
defined by AuFAB+i€, is the frequency separation from the center of the natural

line. (Since the natural width, g is negligibly small,IAw] =IA$| except at

the line center when [A$|ze.) There is no analog for Gi in the impact theories

(for hydrogen), hence numerical comparisons will be made only for Gg.
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The integral corresponding to G, in the impact theory is given by Eq. (30)

of ref.(6). The parameter Ynin Used in that paper is just 2n“02/3 where n

is the principal quantum number and a=k/2/§AD. We therefore compare Gr(Ag)
with
©
GImpact: B %I _szgizl dy
min (19)
=0.08-1log(n)-21log(n)

This function is plotted in fig. (1) for lAw] smaller than the Lewis cutoff (LC).

For larger values of lAml, Lewis obtains7

.GLewis = 0’8_1°g(ﬁ‘AN‘/kT)—Zlog(n). (20)

Fig.(1l) shows that Gr(lel) and GImp ¢ differ by a constant over most of the

ac

correlated regime. To illustrate the source of this constant, it may be noted

that

G (0)= 0.4-log(a). (21)

The significant difference between Eqs.(20) and (21) is in the factor log(n). 1In
the impact theory this factor comes about because of a "strong-collision™ cutoff

which is not made in the relaxation theory. This point will be explored further

in the next section.

For frequencies larger than the Lewis cutoff Gr(Ax) has the form
G, (M) vexp (BAY/2KT) [0.8-1og (R | aw| /KT) 1. (22)

The factor exp(hAd/2kT) produces an asymmetry in G,, which is observed in fig.(1),

for large |a¥|. Since Lewis' results are symmetric, we may compare [0.8~1og(h|Aw|/kT)]
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[dotted line in fig.(l)] with the expression for GLewis’ Eq.(20). Again, we find

a constant difference in which the factor log(n) plays a significant role.
Fig.(1l) also shows the function Gr(Am), calculated with only the ideal

gas term Eq.(15). The corrected Gy goes into its ideal gas asymptote very

rapidly at the Lewis cutoff(LC). While this transition is by no means as sharp

as the change from G

Impact to GLewiS’ it does indicate that the cutoffs used

in the impact theory provide a good approximation to the effects of electron

correlations.

D. The Influence of Strong Collisions

In the previous section, it was noted that Gr(Am) differs from its counter-
part in the impact theories by a nontrivial constant. It was also noted that
there is no analog for Gi(A®) in the impact theories (for hydrogen) and it is
this function which gives rise to a line shift in the relaxation theory. Since
these are important points, it is appropriate to investigate the source of these
disparities.

In the relaxation theory, the effecfive interaction operator may be written

in the form
Y(w) = —(i/ﬁz)f exp (itAw)<VV(t)>dt (23)
o

[see Eqs.(A3) and (A4)] where <s+<> denotes an average over electrons and V(t)

is given by
V(t) = eR+Ealt) . (24)

Eo(t) = explitHe/A}E exp{-itH /A}. (25)
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If nonradiative transitions out of the initial states are neglected (no-queching
assumption), the Aw which appears in Eq.(23) will be (w-wgy)+ie,where wy is the
unperturbed frequency. The radiation damping is not relevant to the following
discussion, hence we may set € to zero and the Aw in Eq.(23) may be regarded
simply as the frequency separation from the center of fhe natural line,
In the impact theory, the effective interaction, operator corresponding to
R(w) is, to second order14’15,
As t
i¢ = -(i/'ﬁAs)<J V(t)[ v(t')dt'de>. (26)
o o
In the impact theory the electron-atom collisions are assumed to be instantan—
eous so that the limits on the integrals may be extended to infinity and As

may be removed [see Eq.(4-44) of ref.(14)]. For purposes of comparison however,

it is convenient to use

+T t
-lim(i/ZTﬁ2)<I V(t)J v(t')dt'dt>

i¢ =
T -T ~T
(27)
TrT )
= —1im(i/2rﬁ2)<[’j V(t)V(tt+s)dsdt>.
T -T0
In the impact theory, the average over the states of the electrons, denoted
by <+s¢> in Eq.(27), is called a "thermal average'.
The perturbation is usually assumed to be a stationmary random process
(although this approximation is rarely stated explicitly), hence
<V(t)V(t+s)> = <W(s)>. (28)

This property is illustrated, in the impact theory, by Eq.(4A) of ref.(7).
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With Eq.(28), the expression for ¢ may be written
id¢ = —(i/ﬁ)j <VV{(t)>dt. (29)
o

Comparing Eqs.(23) and (29), it is apparent that the operators [{(w) and i% should
be identical when Aw=0. Indeed, these operators should not differ appreciably
for Aw<l/t., where te is the correlation time for the electron field, because
<VV(t)> should be negligible for t>te. Lewis7 has estimated t. by AD/vav;
using this estimate, we do not expect X(w) and i9 to differ until Aw>v V/AD.

It has already been shown that these operators are not identical, even when
Aw=0, hence the disparity between them must be due to differences in the methods
of evaluating <VV(t)>. Lewis7 has evaluated this operator in a manner which is
eimilar to the derivation in this paper (Appendix A) and it is possible to make
a fairly close step-by-step comparison. The essential difference in these
derivations lies in the treatment of strong collisions. The term strong colli-
sions refers to those interactions in which an electron comes close enough to
the atom to produce an appreciable overlap of the electron and atom wave-packgts.
In the impact theory, an impact parameter cutoff removes these strong collisions
from the average in <VV(t)>.16 The resulting error in ¢ is estimated by a
Lorentz-Weisskopf treatment of strong collisions and is found to be sma116.
Since no special treatment has been given for strong'collisions in the relaxa-
tion theory, this is clearly the source of the disparity between {(w) and i¢.

To test this assertion, the author has evaluated <VV(t)> using a cutoff
which requires all electrons to remain outside a small spherical region around

the atom (see Appendix B). The radius of this sphere may be.taken to be

n2)x//37m, the same as the cutoff in the impact theory [see Eq.(19) of ref.(6)].
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Numerical calculations have been made with this cutoff, and it is found that

Gr(Aﬁ) is decreased as shown in Fig.(2). In Fig.(2), Gy and GIm agree

pact

to within the accuracy stated for the impact theory calculations. The function

Gp(Aw) still shows an asymmetry for large ]Aw| which does not appear in cLewis'

n
Lewis by exp(hAw/2kT).

A numerical calculation also shows that the strong collision cutoff reduces

This asymmetry is roughly equivalent to multiplying G

Gi(Aa) so much that the shift of the line center (for Ly-a) is reduced by a
factor of 10. When line profile calculations are made, using the strong col-

lision cutoffs, there is less than a 20% difference between the impact and

relaxation theories.

4. RESULTS AND CONCLUSIONS

The role of electromn correlations in plasma line broadening has been studied,
within the framework of the relaxation theory, by the use of statistical tech-
niques. This method provides a very accurate treatment of these correlationg
which is limited only by the choice of a radial distribution function for the
electron gas. The linearized Debye-Huckel function which was used for this
purpose is known to be quite adequate for the temperatures and densities en-
countered in most Stark broadening problems.

The resultsof this work indicate that the impact parameter cutoffs, which
approximate the effects of electron correlations in the impact theories, are
valid to within the accuracy stated by these theories. In the relaxation theory,
an asymmetry is found for frequencies larger than the Lewis cutoff: this asymmetfy
may be included in the impact theory if Lewis' results [Eq.(20)] are multiplied

by exp(fAY/2KkT). The symmetry and shift in the center region of the relaxation
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theory profiles17 are primarily due to the real part of W(w), for which there

is no analog in the impact theory (for hydrogen). Tt has b=en found, however,
that the real part of X(w) is considerably reduced if the strong collision cutoff
in the impact theory is also applied in the relaxation theory.

While the primary purpose of this paper is the study of electron correla-
tions, the significant effects of a strong’collision cutoff require some comment
as well. The dipole interaction.which has been used to represent the electron-
atom coupling,is certainly not valid when a perturber comes close enough to
"penetrate' the atom. For these close contacts, the elementary Coulomb inter-
actions between the perturber, the nucleus.and the bound electron should be
used. In the relaxation theory there is no problem with the wave functions in
a strong collision because one is free to choose any complete set of wavefunctions
in evaluating a trace. There is a problem with the Boltzmann factors however;
the electron-atom coupling which has been neglected in the density matrix [(sect.(2)]
will become important in a strong collision. Tentative investigations indicate
that it will be possible to treat strong collisions in the relaxation theory "
so that no cutoff will be needed. This work will be reported in a future paper.

In conclusion, it is noted that the'relaxation theory does not require
a binary collision approximation, an impact approximation.,or a classical path
assumption. When a strong collision cutoff is used, the results of the relaxa-
tion theory (for hydrogen) agree to Qithin 207 with those of the impact theory,
thus providing an independent verification of the approximations in the impact
theory. The subject of strong collisions requires further investigation and it
is felt that the formalism of the relaxation theory provides a promising frame-

work in which to study this problem.
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APPENDIX A: DERIVATION OF G{(Aw)
A. Separation of Correlations

In Eq.(12), the effective interaction operator was expressed as the sum

of four terms:

BEW) 3y e = [11+021-[31-[4] (1)

where

(1]

be' a§c<aale&.§elc8><csleﬁ.éela'a>fako(w)c8ba

[2]

Saa' aéc<b'aleﬁ'éelCB><CBleg.gelba>fako(w)aac6

(A2)

L . . o
(3] = Fg<b'8leReg [bur<anfeRg |a'Bo£ k7 (w), prg

[4] §B<aale§-§e|a'8><b'8]eg-ﬁe]ba>f8k0(m)

a'pba’

In order to illustrate the derivation of G(Aw), the third term, [3], will be
evaluated in detail; the remaining terms in Eq.(A2) are then obtained through
simple transformations of the dummy variables.

Using Eq.(9) and the notations V=e§{§e and Amab=m—wab, we have

[3] = _i§8<bv3|V|ba><aa|V|a'B>fB£)expfi(Awab,-waB)t}dt

= -

® (A3)

s

where F(t)aa,

b'b is given by

F(E v §B<alVaa'p(e)|B><3|exp(itHe/ﬁ)Vb,bexp(—itHe/ﬁ)|a>

(A4)

Tre{Vaa'p(e)exp(itHe/h)Vb,bexp(—itHe/ﬁ)}
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It is convenient to use R = R =R, and F =F.,. Si

< - Raar T RpByy 7 R aa',b'b 12+ ©°ince any
complete set of basis vectors may be used in evaluating a trace, we may use
the eigenvectors of the N-electron position operator, 35, to evaluate the

trace in Eq.(A4). The eigenvectors of X are denoted by x,

X|x> = x|x X = (X]5%y5 05Xy s (A5)

e

where x is a 3N-vector whose components are the position vectors for each of

the N electrons. In this notation, Eq.(A4) becomes

(e) (A6)

F(t)), = J<§lvlp exp{itHe/h}Vzexp{-itHe/h}|§>d§.

In the classical limit, the density matrix for the canonical ensemble has

the form18

p(e) = exp(—Ke/kT)exp(-Ve/kT)/Tre{exp(-Ke/kT)exp(-Ve/kT)} A7)

and

p

Tre{exp[—Ke/kT]exp[—Ve/kT]} <g|exp[—Ke/kT][¥>exp[-Ve(§)/kT]d§

r \
= J<x|p><plexp[—Ke/kT]|x>exp[—Ve(X)/kT}dxdp (A8)
) FASRS uet v - Y

.....

The 3N-vector p=(p1,p2,---pN) is the N-electron momentum vector and is there-
fore an eigenvector of Ke with the eigenvalue Ke(p)=p2/2m. In a position repre-

sentation, the states ip> have the form

xlp> = explipxm/m 0, (49)

hence Eq.(A8) becomes




-19-

1l

Tre{exp[—Ke/kT]exp[—Ve/kI]} h-SN{CXp[-pZ/kaT]dEjexp[-Vegi)/kT]dﬁ

(A10)

Il

A‘3Nfexp[ve§§)/krld§

where \=h//ZmmkT is the thermal wavelength for an electron. Using the N-electron

probability functionlg

P(ﬁ) = exp[—Ve(ﬁ)/kT]/Jexp[—ve(x)/kT]dx, (A1l1)

it is clear that

N
p(e)|§> = exp(—Ke/kT)ff>P€§)A3 . (A12)

The electron time-development operator will be treated in a similar manner;

we first introduce the identity

t
exp{it(Ke+Ve)/h} = exp{itKe/‘ﬁ}eXp{ (i/‘l‘i)J '\‘Ie(t)dt} (A13)
where
4"
Ve(t) = exp(itKe/ﬁ)Veexp(—itKe/ﬁ), (Al4)

Since we do not expect the intermnal energy of the electrons, Ve’ to vary appreci-

ably, over the times of interest, we make the following approximation:
Y .
exp{ (i/f)| V_(t)dt} = exp{itV_/Hi}. (A15)
With this approximation we have
exp(itHe/h)Vzexp(—itHe/h) = exp(itKe/h)Vzexp(—itKe/ﬁ), - (A16)

where Ve has been commuted with V2 since they depend only on electron position

operators.
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Using Eqs.(A12) and (Al6), and introducing the variable s=tkT/f, we have

roy
I

3
12 = A NJVl(E)P(§)<§IeXp{—(l-is)Ke/kT}vzexp{-isKe/kT}l§>d§

A3NJV1Q§)P(§)JJJ<§lg><R]exp{—(l—is)Ke/kT}|y>

x <X1V26xp{-isKe/kT}|3:><g;!gfdg'é&dzdﬁl ) (A17)

X3NJV1(§)PQ§)JJJ<§J£><91X><YlP'><pf|3>V2(y)

x eXP{‘PZ/kaT}eXP{iS(PZ-P'2)/2ka}dg'dpdydx

VR W

where the Ke eigenvectors |p> and |p'> have been used [see Eq.(A9)]. Noting

Eq.(9) it is apparent that

9N/2<y—x[p'-—p>. (A18)

<x|p><p|y><y|p'><p'|x> = h
27 e RIS PIAREN 'S Apn e 2w MA AN A

Changing variables from R' to gq=p'-p and noting further that (p'2-p?)=q%+2p+q,
o S PO AL | Pl Bec)

o

the p and q integrals are performed in the following manner:

Aty

3N, -9N/2
F12 A h

JVl(?)P(g)fVZ(x)j<x—§]ﬂ}exp{~isq2/2ka} "

X Jexp{—isp-q/ka}exp{~p2/2ka}dpdqdydg
| (A19)

'
h—3N/2J

Vl(§>P(§)JVZ(Y)J<X—§IQ?eXP{-q2(82+is)/2ka}dﬂdXd¥(
A-3N(s2+is)_3N/2JVl(ﬁ)P€§)JVz(y)exp{—(y—x)Zn/kz(sz+is)}dydx.

na W W v Ly

In order to simplify the following calculations we introduce the variable
A(s) = /7/\/5SFis. (A20)

The exponential appearing in the result of Eq.(Al9) is expressed as a product

involving the 3-vectors xj (electron position vectors),



A

exp{—(zfﬁjzAz} = TJexp{- (y -X, )2A2} (A21)

" \ \“
3

and a Coulomb field is used for the electrons,
= . = 2 . 3
Vo) = Ry ) = e ZJ_&Z Y4 /yj. (A22)

With Eqs.(A20), (A21) and (A22), the y integral in Eq.(A19) is easily reduced

to

W02, expi- g 24210y

-3/2 (423)

= 2A - - 242 . 3
e“Aw szeXP{ (x4 HR, Xj/yj}d.?lj'

The remaining integral over yj is evaluated in spherical coordinates, choosing
Py

?ﬁ as the polar axis. ' The polar and azimuthal angles, between ﬁj and y, are

~]
denoted by 6 and ¢ while the corresponding angles between 52 and Eﬁ are denoted
by e% and ¢%. The scalar product BZ'Xj is expanded using the addition theorem

for spherical harmonics of order 1,20

. = 3 4 cing sing) 4] '
R, Vi Rzyj[cose cos®y, + sing sind; cos(¢-¢3)1, (A24)

and it is noted that the azimuthal intégral of cos(¢—¢%) vanishes. 1In this

Ay

manner the Y integral in Eq.(A23) is found to be

(A//F) jV (y)exp{ (y-x)2A2}dy = —eszz cose2 {Erf(x A)/x ] (A25)

AL ¥ A

Substituting this result into Eq.(Al19) we obtain

F(t)12 = —e RlRZZ kj fzcosei cose% [Erf(x A)/x ] P(x)dx. (A26)

Since P(xl,---xN) is symmetric with respect to an interchange of particle coor-
172 'Va\
dinateslg, the form of the integrand in Eq.(26) indicates that only the one-

and two-particle distribution functions,
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Pl(.xj) = Jo..fp(x)dxl-..d.x dx eesdx

j+1 N
: (A27)
Fp(poxy) = J.“JPQS)dxl'"d-xj-ld"xj-hl“'de?«(k—ldick+l".dv)5N’
will be needed. For a gas of N particles, these functions may be writteri19
in the form
P.(x.) = n/N
153

(A28)

Pyl = n’g, (x,~x [ /NG-1),

2

where n¢ is the density and 89 is the radial distribution function for the gas.

F(t) is expressed as the sum of one- and two-body integrals in the following

manner:
L0 c
15‘(t)12 = F (t)l2 + F (1:)12 | (A29)
where
Fo(t) = -e"R_R.I. —2 COSGJ coseJ-——— [Erf(x, A)/x ] P (x )dx
12 172%3]%3 2 dx i i
= -ne"R_R -2 cose1 cosel —-—'[Erf(x A)/x,] dx (A30)
12 l 1 Z,dx1 1 1 o |
= (8mne"A/3V7) Rl.RZ
and
c _ -2 k j
F (t)12 = ~g Rlez Zk# ijk cose cose2 :r—-[Erf(x A)/x 1P (x xk)dx dxk
(A31)
= -n2e"*R.R _2 cosel cose2 -é—'[Erf(x \)/x~]g (|x,=x l)dx dx
12 l L 2 dx2 1 128161 =2 2

The one-body integral, Fo, will give rise to the usual ideal gas results, while

the two-body term, FC, represents the influence of electron correlationms.
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B. Evaluation of the Correlation Term
If there were no correlation between electrons, 8y would be 1 and Fe
would vanish (by virtue of the angle integrals). Since F® vanishes if gy is
replaced by 1, we may replace g,, in the integrand of Eq.(A31), by (g2—1)=—§2.
In order to simplify the evaluation of F¢ » we change variables to y = X 7%,

and x = X, (the 3-vectors x and y used in this section should mot be confused

with the 3N-vectors x = (gl,§2,°'°gN) and y used in the previous section).

. . c
With these variables, F  becomes

Fc(t)12 2atR 1R Jj(x+y) coseg-cos6§+z~%; [Exf (xA) /x] §2<y)d§d;

(A32)

00 #00 d '\'
“RIRZJ Ly(§,g) = LErf(xA)/x] gz(y)xzyzdxdy-

where Q(x,y) denotes the result of integrating over the solid angles Qx and Q :

Q(§,X)

It

-2 X X
+ x+y,
(x y) cosb’ cose1 dQXde

J
-3 x
lx+yl cosB% R_+(x+y) dQ_dQ
” | 2wl T Ty (433)

-3 X X -3 % oY
xjf|§+yl coselcose2 dede +yJJ!§le coselcosezdﬂxdﬂy

0y v>x
(167/3x%) cosG ( ) y<x

The final step in Eq.(A33) was made by integrating first over the y angles,

choosing x as the polar axis, and then over the x angles with Bl

axis. Equation (A33) is substituted into (A32)and the x integral is performed

as the polar

with the result:

Fc(t)l = ~16mn2e"/3 R 'RZJ ygz(y)Erf(yA)dy. (A34)
o
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A linearized Debye-Huckel radial distribution function is used in the evaluation

of Eq.(A34); this function has the form19
Vv
g,(¥) = 1-g,(y) = (e?/kTy)exp(-y/A,) (A35)

where AD is the Debye.length, YkT/4mmeZ, for electrons. Using Eq. (A35), F©

becomes

Fc(t)12 -(Anne“/BAD)Rl-Rzexp(l/AA%AZ)Erfc(l/ZADA) (A36)

Combining Eqs.(A20), (A29), (A30) and (A36) and substituting in Eq. (A3)

one obtains:

b

[3] = -(2ine*/3) (Brm/k) /2 R

vaa'ZBb'bG(Amab') (437)

\.
\

where G(Aw) is an integral defined by
G(Aw) = Go(Aw)+GC(Aw)
GO(Aw) = [wexp{ishAw/kT}(sz+is)—l/2ds (A38)
o ' ,
G (ow) =--a/?fmexp{ishAm/kT}exp{u?@2+is)}Erfc(u/§71333ds

o

and o is a constant defined by

A2V (A39)

o D

The term denoted by [4] in Eq.(A2) is obtained by making the transformation
(a,b,a',b",w)>(b,a,b',a',~w) plus complex conjugation on [3]. It is possible
to write [1] in the form

(1] = -isbb,ch exp(ithe IF(L) v .4t

(A4O)

_(21ne*/3) (8m/kn 3 R__R

vea' G(chb)
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where F(t) is given by Eq.(A4). The second term [2], in Eq.(Al) is then obtained
from [1] by the transformation (a,b,a',b',w) (b,a,b',a',~w) plus complex conjuga-

tion. In this manner one obtains the result stated in Eq.(13).
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APPENDIX B: STRONG CQLLISION CUTOFXF

A strong collision cutoff may be imposed in the relaxation theory by
requiring that all electrons remain outside a small spherical region around

the atom. The radius of this sphere is called X3 the magnitude of X will

be on the order of the thermal wavelength for an electron21

With a cutoff at X the ideal gas term, Eq.(A30), becomes

ocC

- 4 . T a
12 (4mne /3)}31 52 jx I [Erf (xA) /x]dx

3
]

o

—(4wne“/3}§1-§2[Erf(on)/xo]

Using Eq.(A33) in the correlation term, Eq.(A32), the cutoff gives rise to

00 X )
cc _ 2.2 4 . 4 2%
F12 (16n4n%e"/3) Bl BZJX = [Erf(xA)/x]L)y gz(y)dydx
o

Using the Dirichlet integral theorem we obtain the identity:

[ <]

X

roo X o0 ».4

J { £(x,y)dydx = J J ° f(x,y)dydx+J J £(x,y)dydx
X0 X o X X

0 o] (o] [o]

x [++] Lo
J OJ f(x,y)dxdy+J J f (x,y)dxdy
o ’x x 'y

With this identity, Eq.(B2) becomes

ccC

where Fiz is given by Eq.(A34).

Since Fiz is the correlation term without a cutoff, the remaining terms

X X
= 7S - 242l . -1 o oV |To o~
Fl, = Fy,~(16n%n%e*/3)R, -R,[x Erf(on)JO y°g, (y)dy L y8, (¥)Erf (yA)dy]

(81)

(B2)

(83)

(B4)

on the right side of Eq.(B4) represent the strong collision effects on the elec-

tron correlations. It will be shown that strong collisions have a negligible
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. ")
cffect on these correlations. Using g, as given by Eq.(35), the first integral
in Eq.(B4) is found to be:

X
-(l6ﬂ2n2eq/3)§l-§2[Erf(xOA)/xo]J O(ez/kT) y exp(—y/kD)dy

© (B5)

= -(4nne“/3)§1-52[zrf(xOA)/xO][1-<1+xo/AD)exp(xo/xD)]

Since (XO/AD) is on the order of 10“2 or less, this term is 10-4 times smaller
than F°°¢ [Eq.(B1)]. The remaining integral in Eq.(B4) is even smaller than
the term in Eq.(B5); hence we see that strong collisions effects in the cor-
relation term are negligible compared with their effects in the ideal gas term.
The strong collision cutoff may be included by subtracting (FOC-FO) from

the F given by Eq.(A29). This is equivalent to subtracting

G_ (bw) = Jwexp(ishAw/kT)[(sz+is)‘1/2-(x/zxo)Erf(/?QO/AJEYIEEB]ds (86)

o

from the G integral given by Eq.(A38).
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Figure Captions

- Figure (1): G functions for the Lyman-alpha line at a temperature of 2 x 10%

degrees. The Lewis cutoff (LC) denotes the separation of the ideal gas and

correlated gas regimes.

Figure (2): Gy, calculated with a strong collision cutoff, for the Lyman-alpha
line at a temperature of 2 x 10“ degrees. The Lewis cutoff (LC) denotes the

separation of the ideal gas and correlated gas regimes.
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